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NAZA TT F-11,802

SELECTION OF A WING*SHAPE “FORHYPERSONIC VELOCITIES

ABSTRACT: The selection of the shape and general dimensions
L of a wing moving at hypersonic speed is considered as an
o extremal problem with respect to minimum drag at a given

lift, volume, leading edge temperature, and other parameters.
The characteristic parameters on which the optimum profile
of the longitudinal cross-section depend are determined with
emphasis on their values, which separate those cases of known
and unknown volume. It is shown that there exists a relative
wing thickness for which the lift-drag ratio attains the
maximum value at a given detrimental drag, and also that a
spherlcal segment is not always the optimum shape for a lead-
ing edge in the stagnation point:region. The Newton ''faw'
for pressure and the “averagq“ friction coefficient, which
is independent of the wing shape, are used for solving the
problem, Certain general characteristics of the wing which
depend on the angle of attack are considered. Estimates of
maximum possible values of lift-drag ratio obtained here are
very close to those obtained by D. Kuchemann, thus permlttlng

a verification of the results obtalned ‘according to Newton's
law. | «

The selection of wing shape and dlmen51ons is considered as an extremal /40t
problem with respect to minimum drag at a given lift, volume, leading edge -
temperature and other parameters. The characterlstlc parameters which deter-
mine the optimum profile of the longitudinal cross-section are determined, and |
ok }g particular their values which separate cases of known and unknown volume. '
: 4
{ It is shown that there is a relative wing thickness for which the 1ift-
ﬁrag ratio assumes a maximum value when the detrimental drag is assigned. A
spherical segment is not always the optlmum shape for the leading edge in the

RS v101n1ty of the stagnation point.
!

The selection of wing shape and dimensions can be formulated as an

extremal problem for drag, lift-drag ratio, maximum surface temperature or

coolant consumption when the volume, some of the above quantities or other
4% relations are specified. «

. L . It becomes necessary to use the simplest "laws" to solve such an extremal

o problem in a sufficiently general form without systematic large-volume computa-
:ﬁ@ tions. The present article adopts Newton's Law for pressure and the "average"
ag o0

WNumbers in the margln 1ndlcate paglnatlon 1n the forelgn text




coefficient of friction which does not depend on the shape of the wing.

Naturally, in thls case, shapes w1th surface breaks are not considered and the

layer also cannot be taken into account, We should bear in mind that in hypo-
thetical flylng machines it is difficult to separate the wing from the engine.
The above statements define the (solutions of .extremal problems as limiting
estimates of characteristics and general indicators rather than direct practi-
cal recommendations.

. If the wing volume is not known we can assume that its lower part is
plane, and that the upper part is in the "shadow" (the region of break-away
flow). Then according to Newton's Law the lift, drag, and 1ift- drag ratio are

~given by the following

Y == 2¢8 sin? acos o, X= 248 (co + sin®q)
K = sin? a cos a / (¢ + sin®a)

It is assumed that the coefficient of "detrimental" drag c, includes

resistance to friction and the drag of the blunt edge of the wing as well as
of its upper side and that this coefficient does not depend on the angle of
attack. The maximum lift-drag ratio is given by

Ky = ‘/3(2 Ctg any ~tga ) .

The corresponding angle of attack is deferminedifrcm’the“re}etion
smam/ (2ct§'*’ Cm -7- )=2¢

The 1ift-drag ratio curves have a max1mum value only if o < 54°44:,

This angle corresponds to the maximum possible 1ift and an infinite quantity

€y The lift-drag ratio curves for all o where o > o are found between the

curve ctga, which gives the lift-drag ratio for an '"ideal" plate (Fig. 1),

. and the curve Ko . It is obvious that a lift-drag ratio greater than 2 can be

obtained only when the angles of attack are a < 20- 25° . i.e., when they are
relatively small. This study pertains to a thin wing at low angles of attack.

‘ e ..1.,‘Profile'of'the'longitudinal Cross-
o & h : ‘section. ~The drag of the leading blunt edge
4 Is included at this time in the detrimental
aje drag characterized by the coefficient S We
R L assume that the wing surface does not contain
| ? \\\ o regions of finite area with zero pressure
¥ ::25 ‘ - and we designate the lower and upper sides of
SIS the wing by th itive functions ( )
<1 1, e wing by the positive ctions z; (x, ¥),
L. T z, (X, y). If we assume that the wing is

bl 20 . 40 £0 ,
R , thin (Fig. 2) we have

Y2
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2,(%.4) : w0 | Then by disregarding infinitesimals
— = = of order greater than three we obtain the
\\\ﬁ<z,(.§y/://‘ follomng expressions for 1‘1ft and drag:

Figure 2

In the above equations S is the wi;ig area and q is the impact pressure.

We shall seek the minimum value fof drag when the 1ift and volume V are
known, i.e., the minimum value of the functionall

X——AY——E—q—‘-L—Y——-; ‘ [OS-}— S S(z;x — s ;T)dzdy+

| R 0 % s | (1.2)
+ SS(ZZxLl“?wzz— A2 )azay]
0 xS ‘

When the first varlatlon of (1.2) is equal to zero we have

—5;(3%: - 27\.‘th)‘+ ’—:'- == 0? ‘—-(332 -+ 2132\:) -% 0 (1.3

The boundary values at the edges hatfve the form

If we assume that the coordinates z at the leading edge are known

z
12 72
and that we have natural boundary conditions at the trailing edge, we obtain
the following for the tralllng edge:

* zt=c(32'm —2)=0,  2(3mc+22) =0 (1.5)

Integrating (1.3) and determining the constants from (1.5) we obtain

Z1x = 13} -i-d]“’/sﬂh;“g ¥ {/3‘@"(‘“ —I),
22y = — 15k + V)2 /b (21 — 7)

F

(1.1)

[Be? —22)8a]e® = 0, [(3222 + 2h200) bz2]% = 0 (1.4)

(1.6)5

) 1 The problem of the wing of minimum drag is considered in [1,2].



0f the four roots of (1.5) only twd satisfy the conditions of the problem

xmzliiz‘r : zzxz.:O

: i.e., the pressure becomes equal to zero at the trailing edge of the upper
part of the wing. When the roots:are. selected zin this manner the plus 51gn
should be retained in front of the radicals. ;

Integrating (1.6) and assuming that the coordinates Z10° 220 at the
1 leading. edge are knownt we mhtaln -
24—31 = i/ ah (z — o) + 2(b/p) {{1/oA2 4 /apb~1 (x1 — xo) Je—
— /222 3ub“(x1 — x)]*} |
1.7)
23— Zgp.== — 1[5 (x—a0) + 2 (b/ll) {t/92.2 4 ’/.sp.b Hx1—xo) T — (1.7)
B i L GO
We note that the factor p < 0 does not satlsfy the cond1t1ons of the prob-
lem because in this case Zo% < 0. The extremal profile is symmetric and -the
angle of attack is o = 1/3A. Let us now compute X, Y, V
Y X o 4
— ), — e == A3 s ToE=U== ;\. (0]
| quz cy”mmm}r f2(m)z ] quz bz f3(m) . b3 f‘( ) (1. 8)
Here }
O = O o (it ()= (%)3—— 1)
fs(w)= (2/3)3-——~(‘/<sts e — |
C l - (1.9)
N n — B LA S
ln((!)).__ S(1+3ml) dy’, m:- 3 l_—z—_ 5
— The functlonal (1. 2) is equal to I
) *
X RY — =200 ot g (U (1.10)
. The ordlnate of the profile for the longitudinal cross section of the
W W1ng ir e
P et { A —
=Ty = 1+ 3ml’)’/=—[1 + 30l (1 — )2}, E== xo
( s)l } E (1.11)

‘;;@¢rh,it is obvious from equations (1.8) that, under the assumed conditions, the
characteristics of the wing are affected only by the distribution of wing area
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across the span and not by the plan form. The value of parameter w, which
determlnes the shape of the profile, depends only on the parameter

(l.le

which is characteristic for variational problems in which the minimum is

sought when the lift and volume are known'.

The problem of the maximum lift-drag ratio for a known volume, i.e., the
problem of the minimum value of the functional X/Y-vV/b is reduced to the
precedlng one if we assume that A = 1/K, u = vY/qu , where v is an indeter-
minate factor.

Equations (1.8) acquire the form

“o o B IG%;S

K = fi(), V=Trar" L _:_fa(é))
oS _ Rlo)—file) . S (1.13)
R O I

Thus, in the given case, the characteristic parameter which determines
the shape of the profile will be the ratio of the "detrimental' drag to the
wave drag® c S/bzvs. The functional is

.X Y _ e T i e ; R
/ vV/bs = [1—yf, (m)_]/lx’ | (1.14)

When w +~ 0 expression (1.11) for z' becomes
| 2 = 1/3A(:c-—xo) /b
1 .e., the profile changes to a wedge with the upper 51de along the flow.

We use the expansion (1 + 3 ml') to find the values of the characteristic

. parameters corresponding to w = 0.

By 1ntegrat1ng we obtaln
in(w)=1- n(3m) 5 + ‘/zn(n — 1) (3m)~sz + ’/2 Afsn(n—1) X
X (n—2) (30)%s;+ 1/y:4/3:1/in(n—1) (n —2) (n — 3) (3w)isi ...
o1
Sp = § l’ndy’, yr=-!b/_

1 This parameter is discussed in [7] which was generously provided by the author.

2 This parameter is characteristic of all variation problems in which the volume
~and "detrimental" drag are known [1,4].



Substituting this expression into Q1.9) we have

fi(w)"“ (et o5, fz(m)__. 1s(4/ a5y + 08 + .‘)
; . )m’: 1/3 (8/931 + ©S: + ) ‘ o

l)z o szz ] : -23 . : Q G
—— e '3 332 & ; ;
v 45!J1 tol =7 )+ (1.15)

e,

onsequently w = 0 when VZAQ} = 52%/451. Similarly, from (1.13) we have

b3/ coS = (s/4s1) (1 + Bss0/52 + ...)
and w becomes equal to zero when T

bzlls/CoS == 523/431 (1 . 16)

, The profile of the longitudinal cross-section is symmetric and convex
(optimum distribution of volume on both sides of the velocity vector) when

B 4v3/cos >1

blste >
“fn 6fdér toxédﬁéiété the comﬁutatidns 1t is necessafywégwﬁsé“fﬁé‘functibh‘
L'(y'). We will apply it in the form 7 = Zé(l - y')r. Integrals ih can be
computed in finite form when r = ... 1/2, 2/3, 1, 2. Let us compute them for

r=1andr=1/2,

In the case when r = 1

25 L e =11 ¢ ”3([ 1+ -+ 30y 1 (4 30)%—1 ]

- L kW% 1507 1o’ do’
o P20 YoM
fz((l))—— I’ _—30)1 li—r

fs(m’) (3/3)3 -+ 30)')‘/: —1 (i + 3(:)’)’/:—— 1 1] _

(1 + 30")% — 1] — 1}

l(’)

) Y
0

- In the case when r = 1/2

()= k&2 ’l”{ 1 4 f (1+3°”)’/*~i + (i~r3w')‘/=-—1 ‘ ~(1+3m'),’),—1
. 15 2 90)’2 L 6 . 2 . 1/‘ - }
]zl(ml)_: (2/3)3{ 4 ‘[ '“+3ﬁ)’)rlz°‘1 _ (1+30)')s/2-; 1] -—-i}
’ 90)12 7 5
| g =00 Zi)’{ 4 :[ (A +30)h—1 " (1+3m')=/,_1‘+3 (+300%—17 .
! 2702 1/, 2 o 18 ' 1}

e '“\‘““""‘\*Ww o

*




The limiting values of the charactéristic parameters are ?/44
v _ [ =1, '.$M‘{% r=1)

8y 7 e 82 ==
eyl 3 (r .__z 1/2)' _ 2 b2p3 L8/ (r= 1/2)

(1.17)

(R

Eigure§3 shows the variation in w', fi, fé, fé as a function of the
characteristics parameter g, ; as this parameter increases the magnitude of wi
increases without bounds as the square of this parameter, and when this param-
eter is large the w1ng profile of minimum drag, where the volume of the wing
is known [1,2], i |

i~1—ﬂ¥®%

When the wing has a large area in plan form (r 1/20), with the same
characteristic parameter, the profile is less convex and changes into a wedge
when the values of the characteristic parameter are large. Figure 4 shows the

variation in w' and fi as a function of the characteristic parameter gz. The

interesting difference from the preceding case is that the parameter varies
within defined bounds.
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Figure 3. ' Figure 4.

Thus the optimum profile of the longitudinal cross-section of the wing
remains convex when the characteristic parameter vz/cy varies from « to

522/45 and the parameter,c S/b” v3 varies from zero to 451 23. When the

& éharacterlstlc parameters have values of Sy /4s and 4s,/s 2 , the optimum

profile becomes a wedge with the upper 51de dlrected along the flow. As the

characteristic parameters are varied further the rectilinear lower generatrix
remains optimum while the upper one in the 'shadow'" becomes arbitrary. It

-~ should be noted that under the assumptlons of a thin wing, a displacement of




the longitudinal cross-section in plane yz, where their slopes remain constant,?g
has no effect on the characteristics of the wing. Consequently the shape of !
transverse cross-sections may be selected in, such a way as to satisfy some '
other requirement, for example, concernlng the distribution of thermal Flux

along the transverse cross- sectlon :

2. Area, width and span of a wmg Let us con51der several general varla-
tions in the w1ng characteristics as a function of the angle of attack. For an
arbitrary profile of 1ong1tud1na1 cross-section we have :

,,,, Y =2qlie— it 20t )]
- X = 2gcoS +in+ b+ Bu (i — i) + 3a2(lu+ )

b x4

: (in‘v= S S,zmvdxdy) :
0 X ’. 3
If the profile is symmetric, then
Y=38¢ina, X= 24 {CaS + 2(113+ 3a2in)]
Variation in the lift-drag ratio as a function of the angle of attack, /45

may be represented in the form (Fig. 5, curve 1)

k:—.K : 2(10 (lo=g—‘

K.  1+a?’ 7 Um

Here K, = 1/30Lm is the maximum value of the lift-drag ratio and o is the
corresponding angle of attack. In the case of a wedge-like profile of rela-

tive thickness 2c¢, we have i

= ¢S, 113 = CSS. Therefore

11

X = 2S[eo '2”c”(c2 +30%)], ap = cyim) (2.1)

Y = 8¢Sca,

When ¢ /c < 4, the dlstrlbutlon of volume is optimal on both sides of the
veloc:1ty vector when cO/c = 4 the upper side of the wing is directed along

the flow, i.e., the entire volume is below the velocity vector!  If the
coefficient of detrimental drag is known, the optimal relative thlckness and
the corresponding lift-drag ratio are cm == (co/4)", th Kmm__ 23/ 3co'h,

11n [7] it is assumed a priori that the upper part is plane and directed along
.the flow.




ve

Sy

=N fit(0) 3, curve 2)

In this case the generatrixes of the upper side are directed along the flow.
fect of relative thlckness on the max1mum lift-drag ratio is equal to

If the thickness is equal to the optimum thickness, the relative friction

3 d£ag is 1/3 of the total drag [1,4]. Variation in the lift-drag ratio as a

fhnctlon of characteristic parameter for a wedge-type profile is

B Knv _ (@T+g )-"= Ce=1)
lolz (12 -+ 9/8g2)w '/z N “(r — ,/2)'

The corresponding curves are shown by the dot-dash line in Figure 4. The
difference between the 11ft -drag ratios of wings with the optlmal and wedge-
type proflles is sllght Thus the 1ift- drag ratio of a wing with cylindrical
surfaces is quite close to that of a w1ng of optimum profile of longitudinal
cross-section. We see in [4] that in the case of a flat "homothetic" body a
conic surface is optimal.

] //%'”kwu$;ﬁ\\\§§J If the wing volume is not known, the
”// — ~] optimal surface for the lower side of the wing
%’l d is-a cylindrical surface.-with.a generatix of
,/// : ; constant slope o. Consequently,
y 1
) 1 (
.'fd. ‘ . )r JERR— i . i R
4 g Y=se, . X=2Se+e),  K=o/@td)
0 10 %I W ke K
- : K == 2 D == (2¢) » = e
Figure 5 Ko /3a¢ BETV ‘(A o) ? En 1 +2a‘.’3

f” The relation k = k (a°) is shown in Figure 5 (curve 3).

When the volume is not known the distribution of wing area over the span
has no effegt on the lift-drag ratio. On the other hand when the volume is
known (c /e~ < 4) the distribution of area is governed by the relative thick-

.. ness ¢ = v/sz,'and rather strongly so, not only when Zé is known, but also

when the wing area is known. Thus, for example, when the parameter gy = 0 the

11ft drag ratio of the wing whose plane form is characterlzed by the exponent
= 1/2 is 17% less than that of a delta wing (r =

. gm wee

1It is obvious from equations (2.2) that the parameter V2/3/S , Where Sp is

j~the area of the surface over which flow takes place, cannot be a character-
--istic parameter in the general case because it does not contain c Also

:  ~power which contains the relative thlckness is different for bodles of

(2.2) |



; Since in the case of optimal profile of the longitudinal cross-section,
the variable functionals (1.10; 1.14) contain only the value of the wing chord
Z(y), the variational problem w1th respect tomZ(y) has no solution in general
or has the trivial solution Z(y) = O' Thus, in order to determine it we must

~ have additional information, whlgh‘y;l;,bg,pxgspnted in the following sections.

It is obvious from the above that in selecting the optimal dimensions of
the wing it is qulte permissible to consider a wing which is made up of cylin-
drical surfaces, i.e., to make use of equations (2.1). If the lift and the
- wing volume are known, the drag is given by the expression

X E 3 . s.
°~2—q-z’2='[00+2(-;—)]s‘+—.c_v.f_‘_ (2.3) ‘
2 ,

Variation in the quantity which is proportional to the wave drag
A = (X/2qb'~’ —_— COS/bg) 10150_3

as a function of the parameter g; is shown in Figure 6 by the dot-dash line

together with the corresponding curves for a wing with optimal profile. The
difference in the lift- -drag ratios here is somewhat greater than in Figure 5.
It follows from equatlon (2.3) that when Y and.V are known it is possible to
have optlmal semi-span b and area distribution over the span.

.MW A ' If the problem concerning the optimum
;\\ ——r=! 1ength of the wing is meanlngful its solution
\\\ —— L requlres that we take into account the varia-
X 2 :
0 T~ . tion in the friction coefficient as a function
I~ of length.
B ‘-..‘.‘,_-_u- .
7l
%ai i 015 &m_ 3. The shape of the leading edge of the
: ; wing. For small angles of attack the thermal flux
Figure 6. ) attains its greatest value at the leading edge.

o Consequently its shdpe must be selected in such
a way that the temperature does not exceed the permissible value, or, if this
~ Is impossible, the given temperature must be maintained by a coollng system.

_ In the first case the capabilities of a material will be completely utilized

" to reduce the wave drag of the edge in the case when the temperature along the

entire length of the edge has a maximum permissible value based on strength
conditions. We shall limit ourselves to this case and will consider the drag
of the edge independently of the remaining part of the wing. This is permiss-

. ible in the case where the volume is not known or where the given volume can

" be found on the basis of the bottom region. Let us assume that the leading edge
has the shape of a semicircle in the cross section normal to the arc o(¢) (Fig.
2). Then its surface can be given in a parametric form

z = Zo(p) — r(¢p)cos 0 cos ¢, y == _/o(q)) + r(q))cos 9 sin q), 4 =’r(cp)sin 0 | (3.1)

10
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* The cosine of the angle between the% velocity vector and the line normal to

the surface is

When the angle of attack is a = 0, drag of the leading edge is

x.,;;‘z'q S [ 20 sing -t cos0cos (o’ +
0 ’Jz'*‘(ﬁ +reosf)?

The condition that the maximum temperature remains constant at the edge
can be approximated in the form

fkicos 9)]3 do Jﬁ (3.2) ::

" - ‘ N b i
+ 1 Ro’cos?p . :
cosq)( (—- — )) =TV:IE_, P , (3.3)

- 20— Rcos?¢

Here R is the average radius of curvature of the surface permitted by
he strength of the material. It is obmous that the solutlon of the varia-

Let us assume that r' < ¢' and that we can§disr_egard this quantity. Then

8qR J 0’2 cos® 9% Rcos®
SO 3 3 20_ = Reos* @ 32 26" —Rcost @

It can be shown that the second derivative of the expression under the
integral sign with respect to o' will be greater than zero. Consequently the
Legendre condition is satisfied.

The external value may include the region of straight line L if in this

0 e“ase the point ¢1 is not an angular polnt Then the total drag of the edge

W;Lll be

893 6’9 s 9t Reoso | L cos
Q e i R v d (P‘ ]
{.S 20’ —Reos?g \ ‘*_—32 20’ —Reos* ¢ ) P+ 2 }

The width and length of the wing a:é'e‘ given by

. e 93
i.bm §ocosodptioosq, 1= § o'singdg+ Lsing,
s e ' o : ) :

11 -

147

i
i

i

<

(3.4)%



It is possible to formulate various 1soper1metrlc variational problems.
Euler s equations for these prdblems differ in the free term P (¢, ¢ 1)

o’ (o’ »Rcosztp) 9t R'costo —P=0 (3.5)
(20 --—1'2(:0szq))2 E2 (20 ——A‘i‘mszq))3 ‘

R If there are no relationships and the boundary condition at the point ¢1
1s natural, Euler's equation has the solution

= ’/;R cos? (P(i + 1’/9 ’/m) =1 46 Rcost g

S — ~

Equatlon (3.5) is cubic in the general case and its solution depends on
the sign of the discriminant

3
Do MK Ay 1_4,,)( £

16(1—4P)°* L\ 32/

If D < 0 there is one real root:

OI':.—._RCOS2 { .—( ’/‘ﬁ )"[( +( 1__1;::2—(’; “—/i;);) >'/2>'/: +
167,33 \ Yo 1y .
)

If D> 0 then all three roots are real:

| R¢OS”(P | a3 ‘/=( o 9:(11-—&
o = ¢ 1+(.__________) ), 3 ==
"3 ( YT cos P cos 3 M‘i(‘/r}-‘/m)’l

5 If we take into account the contlnulty condition for the curvature at
the point ¢; we have for the function P:

f; The external value does not contaln a rectilinsar section; width and
length of the wing are known (A, u are indeterminamt factors)

et g e e

P == —2(Lcos o+ p sm cp) /coes

. The extremal value contains a rectlllnear regionf either the length or
w1dth is given. Then ,e

costor B . sin g cos* 91
4eoste 4sin gy cos @




Las

L3

N The analysis of the results obtained shows that in the general case the
results contradict the hypothesis r' < o' except in the vicinity of the stagna-
tion point. Thus we can only conclude. that at the stagnation point the optimum

radius of curvature is ol ~ (1 - 7. 5)R. It decreases further and onlysnear the

,,,,,,, 0

- point ¢ does it increase to infinity if th@wextremal value becomes a stralght

Tine. e width of the curvilinear se n of the edge appears to be of order
R: To solve the problem concerning the optimum leadlng edge it is necessary
to use the method of direct variation.

As an example let us consider the schematlzed leading edge con51st1ng of

a torus with radius R, and Ty = RRO/(ZR - R) and a rectilinear region with a

radlus T = 1/2R c052¢1. The width, 1ength and area of the wing are

sin? tp:' L cos®
s\ righi P1 ]
3 J 2 ‘

e

ﬁﬁen the width is b/R = 1.2 the optimum edge is rectilinear (¢1 = 0) but when
E/R are great, minimum drag is achieved when | P& 805, By : The quan-

t1ty RO/R ~ 1 is also optimal when the area and the width are given or when

the area and the length of the wing are known The optimum angle 1 in thlS

. ¢dase varies. The optimum ratio RO/R increases when the given 7 and ZS/Z

" inicrease.

13
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:Jw 1f the leadlng edge of the wing is 'thin and if we can assume thatr'< ¢!
and r' < g' the drag for angle of attack a is glven by [5]

'~aﬁ¢asmzmr»

1/3c0s% a cos’ q)]

SIS S SRS ——

It is obvious from (3.4) and (3.6) that the extremal problem of the mini-
mum temperature (the magnltude of 1/R) when the drag is known, is equivalent
to the problem of the minimum drag at a glven temperature.

L. The shape of a wingwidthof kndwn volume. It is obvious that in the
case where the wing volume is known and the bottom region cannot be used to
determine this volume (the trailing edge is straight) it is necessary to seek
the minimum total drag of the leading edge and of the remainder of the wing
in order to determine the wing shape. This problem has to be solved by the
method of direct variation. Let us assume that the lower and upper surfaces
of the wing are cylindrical and that the slopes of the generatrixes with
respect to the velocity vector are o and 8, respectively. If we designate
£€=1/2 (o + B) and n = 1/2(a - B) assuming that edge is thin, we have the
following equations for total drag, 1lift and wing volume.

X( 41\R
T 25+ 3n2)+ erlsi -
‘ Y o dtee ¥R (4.1)
. cU= 2052 = agl)s1, v —-wz-; o ___;.___._*_ gsz | |
! ; 1 s ; 4.2}

r . r
r= meostaar, n={ ey

.. 1s

Mm =

e R

The volume should be considered as‘known if

3 g » ) B JAR ‘ l , | -
s v;sz(——-c,--i- ! ) 4 ZDJZR, (4.4)
‘ 33‘6 b
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The maximum lift-drag ratio K = 1[3nm will exist when the angle of attack

(o, o )" (4.3)
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L)

e Let us consider two families of wings of known plan form:

anlo’z

| ‘+4) @ty

Zo = loy'", s1=

and the radius of curvature for the contour at the stagnation point is

60’ = b / 210, i npu n 2'—"' :2, Q'Q' e °° :‘: v

zowklok’y"‘“ ‘ : . ']tﬂ’
. Lr + 1 60’0’10'('1 +1)/b :
: { 2n(nz—-4) b’

8 == e . -+
CFDE ) 3@+ )t (4 3) lyor
2(n—2)%° i

5(2n + 1) (n + 3) (200'10')'“']

2n?

We assume in both cases that,the'width‘of the wing and its area are

known. The results of calculations for S, = 1.5, cF'= 0.001 are shown in

Figure 7. Under the specified conditions a decrease in Zé caused by an increase
in n in case (1) and by an increase in 06 in case (2) results in a reduction

- in the lift-drag ratio. For large relative volumeS'v, a decrease in the per-
missible temperature of the. leadlng edge (an. 1ncrea$e An _R).does not lead to .
a.large decrease in the 1lift- drag ratio.

v ' Lo
. S OR}J"”f Fle lﬂcﬂ’s ey
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P — > =
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The evaluation of the maximum p0551b1e value of the lift-drag ratio using
Newton s Law, obtained in this work is very close to that found for pointed

.= bodies constructed with the aid of the stream surfaces of two-dimensional

flows [6]. This makes it possible to verify the computations based on Newton's
Law, especially since the optimum shapes are close to pyramidal. ‘
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